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In this paper, an approximate analysis using a layerwise approach is presented to
study the vibration of thick circular cylindrical shells on the basis of
three-dimensional theory of elasticity. The boundary conditions studied are simply
supported-simply supported and clamped-clamped boundary conditions. In this
approach, the thick cylindrical shell is discretized into an arbitrary number of thin
cylindrical layers in the thickness direction and each layer assumes a three-dimen-
sional stress state. The approach is similar in concept to the finite-strip method.
The displacements for each layer are approximated by trigonometric functions in
the axial and circumferential directions and by some linear-shape functions in the
thickness direction. The governing equation is obtained using an energy minimiz-
ation principle. Extensive frequency parameters, never seen in the literature before,
have been presented for a wide range of thickness-to-radius ratios and
thickness-to-length ratios. In addition, the frequency characteristics of thin and
thick cylindrical shells are also studied and the displacement fields in the thickness
direction for various thickness-to-radius ratios are also presented. The analysis has
been verified by comparing results with those in the literature and excellent
agreement is obtained.

© 1999 Academic Press

1. INTRODUCTION

In the literature, many of the shells studied are based on classical shell theories,
such as Donnell’s [1], Fliigge’s [2], Love’s [3] and Sanders’ [4] shell theories,
which are based on the four simplifying assumptions of Kirchhoff-Love’s hypothe-
sis, see reference [3]. In classical or thin-shell theories, the transverse stress and
strain components are ignored. This omission makes the thin-shell theories highly
inadequate for the analysis of even slightly thick shells. In recent years, the
refinement of thin-shell theories has resulted in a number of the so-called higher
order shell theories, see for example, Bhimaraddi [5] and Reddy [6]. The higher
order shell theories are better than the thin-shell theories for the analysis of slightly
thick shells but are still inadequate for the analysis of moderately thick shells.
To analyze moderately thick shells, the transverse normal stress and strain
components, which are ignored in the higher ordered shell theories, have to be
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accounted for and only an analysis based on the three-dimensional theory of
elasticity would account for all the transverse stress and strain components.

In the literature, the study of shells using three-dimensional theory of elasticity is
relatively scarce in comparison to the study of shells using other shell theories
because of the complexity involved in considering all six stress and strain
components. Studies on shells based on three-dimensional theory of elasticity have
been presented by Pochhammer [7] and Chree [8], Greenspon [9], Gazis [10],
Herrmann and Mirsky [11], Nelson et al. [12], and Armenakas et al. [13] for
infinitely long cylindrical shells. For finite-length cylindrical shells, Gladwell and
Vijay [14], Hutchinson and El-Azhari [15], Singal and Williams [16], Cheung and
Wu [17], and Soldatos, Hadjigeorgiou [ 18], Leissa [19], Jiang [20], and Ye and
Soldatos [21] have also presented studies using three-dimensional theory of elasticity.

An exact three-dimensional elasticity analysis of a cylindrical shell is a
challenging problem. The difficulty lies in finding a set of displacement fields that
would satisfy the specified boundary conditions and the stress-free surface
conditions. In the above studies, the three-dimensional elasticity of elasticity
solutions are based on the Rayleigh—Ritz method, see for example, Gladwell and
Vijay [14], Hutchinson and El-Azhari [15], Singal and Williams [16] and So and
Leissa [19], the perturbation method by Jiang [20], and a recursive solution
method by Ye and Soldatos [21].

In this paper, an approximate analysis similar to the finite-strip method, see
Cheung [22] and Cheung and Tham [23], is employed to study the vibration of
thick cylindrical shells on the basis of three-dimensional theory of elasticity. In this
approach, the cylindrical shell is discretized into an arbitrary number of thin layers
in the thickness direction, and the discretization process is similar to the
finite-element method. The displacements in the axial and circumferential
directions for each layer are approximated by trigonometric functions that satisfy
at least the geometric boundary conditions and the periodicity of harmonic motion
respectively. In the thickness direction, the displacements are approximated by
some linear-shape functions that are expressed in terms of some generalized
co-ordinates. The displacements across the thickness are assumed to be continuous.
Using an energy minimization principle, the characteristic eigenvalue equation can
be obtained and solved for the natural frequencies and eigenvectors, which are the
generalized co-ordinates.

In the literature, many of the studies for finite length thick cylindrical shells using
the three-dimensional theory of elasticity are for free—free boundary conditions, see
for example, Gladwell and Vijay [14], Hutchinson and El-Azhari [15], Singal and
Williams [16] and So and Leissa [19]. In the present work, studies are carried out
for simply supported and clamped boundary conditions and extensive frequency
parameters are presented which are never found in the literature. Cheung and Wu
[17], Soldatos and Hadjigeorgiou [18], Jiang [20] and Ye and Soldatos [21] have
presented some studies for either simply supported or clamped boundary condi-
tions. However, in these papers, very few results were presented. The extensive
frequency parameters presented would be useful for researchers who can use them
to validate against their results. The present analysis has been validated against
available published results and the agreement is found to be excellent.
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2. FORMULATION

Consider a thick cylindrical shell, see Figure 1(a) having a uniform thickness H,
length L and a radius R. In the present approach, the cylinder is discretized into an
arbitrary number of thin annular cylindrical layers, nl, see Figure 1(b), and each
layer has a uniform thickness k. For the jth layer, the displacements in the x, 8 and
z directions, defined with respect to a middle surface co-ordinate system (x, 0, z), are
denoted by uf, uj and uf, respectively.

For the jth layer, the displacements u{, uj and u? are written as

uf = y1(z,1)$(x) cos(n),
up = 15(2,1)po(x) sin(n0),

ul = y1(z,1)$.(x) cos(n0), (1)

Typical layer

| __—— jthlayer

(b
Figure 1. (a) Geometry of a thick cylindrical shell; (b) Geometry of a cylindrical layer.
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where
iz 0 =oul + ful™ 2
in which f = (z — zj)/h and « = 1 — B. z; is the distance from the middle surface of
the cylinder to the lower surface of jth layer and u are the generalized co-ordinates.
¢;(x) are some functions which satisfy the geometric boundary conditions, and » is
an integer denoting the circumferential wave number.
The displacement fields defined in equation (1) can be written in a matrix form as

u=N-d, (3)
where
u' = {ul up ul}, )
d" = {ud up ul uwittouptt uitty, (5)
N =[N; N;] (6)
and
[ ap,, cos(nb) 0 0
N, = 0 2y sin (n0) 0 , (7)
| 0 0 o, cos(nb)
[ B¢ cos(nb) 0 0
N, = 0 By sin(nd) 0 . (8)
| 0 0 P, cos(nb)

For the jth layer, the three-dimensional stress-strain relation is given by Hooke’s
law as

o =[C]e, 9)

where
0" ={0x Gy 0. Tp: Tuz Two)> (10)
&' = {&x & £ Vor Vxz Vxo) (11)

and the elastic coefficients matrix [ C ] for isotropic materials is defined as

Cii Cip Ci3 O 0 0
Cia Cp Cuhz O 0 0
C13 C23 C33 0 0 0

Cl= , 12
L] 0 0 0 Cu O 0 (12)

0 0 0 0 Css O
0 0 0 0 0 Ce |
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where the coefficients C;; are defined as
Ci1=Cy=0C33=4+2G,
Cin=Ci3=Cr3=14,
Cia=Cs5=Ce6 =G,

_ VE
1+ v =2y’

E
2(1 +v)°

A

(13)

The three-dimensional elasticity strain—displacement relations can be written in
a matrix form as
e=D-u, (14)

where the differential operator D is defined as

0
E 0 0
1 0 1
0 — Nl
R; 00 R;
0 0 g
D 0z (15)
o o2_1 1290
dz R; R;d0
0 0
z 0
LA
| R; 00 Ox |
in which R; is the radius of the jth layer. Equation (14) can be rewritten as
¢=B-d, (16)
where
B=D-N. (17)

In the present study, the cylinders are subjected to simply supported and
clamped boundary conditions. For simply supported boundary conditions, the
conditions at the ends, x = 0, L, are defined as

Ug=u,=0,=0 (18)
and for the clamped boundary conditions, the conditions at the ends, x = 0, L, are

U, =g = u, = ou,/0x = 0. (19)
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In the present analysis, through the use of orthogonal beam functions for ¢;, the
above boundary conditions are fairly well satisfied.

The kinetics T; and potential V; energies for the jth layer is obtained by
integrating the respective energy density over the layer’s volume as follows:

=5 [[[ ity + b + @ R avaxaz, 20)
V= % JJJUT~£Rjd9dxdz. (21)

vol

After substituting equation (3) into equation (20) and substituting equations (9) and
(16) into equation (21), the kinetic T; and potential V; energies for the jth layer can
be written in a matrix form as

T, = 1d™ M, d, (22)
Vv, =1d"-K;-d, (23)

where M; and K; are the mass and stiffness matrices of the jth layer defined as

M; = Uf(pj NT N)R; d0dxdz, (24)

vol

K;= ||| (BT C-B)R, d0dxd:. (25)
= ||Jer-comm

vol

For the cylinder, the kinetic T and potential V' energies are obtained by summing
the kinetic T; and potential V; energies of all layers. The kinetic T and potential
V energies of the cylinder can be written as

T =%5T‘M‘5, (26)
where
5T = {u}c u}, ul u? uﬁ u? 30D ug(nl+1) ug(”Hl)} 28)

in which ¢ denotes the set of generalized co-ordinates for the cylinder and nl
denotes number of layers in the cylinders. M and K are, respectively, the mass and
stiffness matrices. The size of these matrices is 3(nl + 1) x (3(nl + 1). Applying an
energy minimization principle to an energy function defined as L = T — V, one
gets

Ko + M = 0. (29)
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Substituting § = dye’" into equation (29) will result in an eigenvalue equation of
the form

(K — w*M}d, = {0}. (30)

3. NUMERICAL RESULTS AND DISCUSSION

To validate the present approach, the results are compared with available
published results in the literature for a wide range of thickness-to-radius ratios.

Table 1 shows the convergence of the frequency parameter Q = (wH/n)./ p/G for
a thin to a thick cylindrical shell. The results for H/R = 2:0 correspond to a solid
cylindrical shell. The convergence study showed that the frequency parameter
Q2 converged as the number of layers increased. Table 2 shows the comparison of

the frequency parameter @ = wL./p(1 + v)/E with three-dimensional elasticity
results of Soldatos and Hadjigeorgiou [18]; the results are in good agreement.
Tables 3-5 show the comparison of the frequency parameter Q = (wH/n)\/p/G
with the results of Armenakas et al. [13] for various thick cylindrical shells. The
results are also in good agreement. In all the comparisons, the results compared are
for nl = 25.

In this paper, the frequency characteristics of thick simply supported-simply
supported and clamped-clamped cylindrical shells are studied. Frequency
parameters ¥ = wR./(1 —v?)p/E, of hollow and solid cylindrical shells are
presented for a wide range of H/R and H/L ratios. A study to compare the
frequencies obtained using classical shell theory and the present analysis is also
presented.

TABLE 1

Convergence of frequency parameters Q = (wH/n)/p/G for isotropic cylinders
m=n=1,HL=02,v=03)

H/R

nl 001 01 02 20
5 0-05804 007642 010723 0-08799
10 005782 007624 0-10709 0-08734
15 005777 0:07620 0-10706 008718
20 005776 007619 0-10705 008712
25 005775 007619 010705 0-08709
30 005775 007618 010704 0-08707
35 005775 007618 010704 0-08706
40 005774 007618 010704 0-08705
45 005774 007618 0-10704 0-08705
50 005774 007618 010704 0-08704
Exact 005774 007618 010704 0-08703

f Armenakas et al. [13].
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TABLE 2

Comparison of frequency parameters @ = wL./p(1 + v)/E for isotropic cylinders
(m=1,L/R=10,v=03)

H/R n Soldatos et al. [18] T Armenakas et al. [13] Present
0-1 1 1-06238 1-06226 1-06234
2 0-88260 0-88233 0-88253
3 0-80963 0-80925 0-80951
4 0-89905 0-89877 0-89893
5 1-12216 1-12209
02 1 1-18908 1-18889 1-18898
2 1-10121 1-10092 1-10107
3 1-19793 1-19755 1-19777
4 1-48975 148933 148971
5 1-91389 1-91406
03 1 133761 133727 133748
2 1-32371 1-32335 1-32359
3 1-52805 1-52764 1-52804
4 1:92695 1-92660 192722
5 2-44628 2-44692
TAdapted from Soldatos et al. [18].
TABLE 3

Comparison of frequency parameters Q = (oH/n)/p/G for isotropic
cylinders (im =1, H/'R =04, v = 0-3)

n H/L Armenakas et al. [13] Present
0 0-01 0-01612 0-01002
0-1 0-15289 0-10000
0-2 0-20495 0-20000
0-4 0-27540 0-27544
0-6 0-42022 0-42035
0-8 0-60009 0-60033
10 0-79274 079314
2 0-01 0-06217 0-06219
0-1 0-07456 0-07458
02 0-12494 0-12496
0-4 0-27193 027199
0-6 0-44144 0-44158
0-8 0-62520 0-62546
1-0 0-81660 0-81701

Figure 2 shows the variation of the frequency parameters iy against H/R ratios
for frequencies computed using classical Love’s shell theory, see Lam and Loy [24]
and Loy et al. [25], and the present three-dimensional analysis. For H/R < 0-05,
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TABLE 4

Comparison of frequency parameters Q = (wH /7)./p/G for isotropic

cylinders (im =1, H/R = 1-0, v = 0-3)

n H/L Armenakas et al. [13] Present
1 0-01 0-00040 0-00041
0-1 0-03563 0-03563
0-2 0-11368 0-11368
0-3 0-20451 0-20451
0-4 0-29836 0-29836
0-6 0-48693 0-48698
0-8 0-67583 0-67597
1-0 0-86589 0-86618
3 0-01 0-65850 0-65890
0-1 0-65957 065997
0-2 0-:66496 0-66535
0-3 0-67876 067914
0-4 0-70383 0-70421
0-6 0-78912 0-78952
0-8 0-91240 091285
10 1-:06030 1-06084
TABLE 5

Comparison of frequency parameters Q = (wH /n)/p/G for
isotropic solid cylinders im=n=1, H/R =20, v =03)

H/L Armenakas et al. [13] Present
0-01 0-000253 0-000258
01 0-02423 0-02434
02 0-08703 0-08709
04 0-26658 0-26659
0-6 0-46827 0-468256
0-8 067316 067316
1-0 0-87660 0-87665

there is no difference between classical shell theory and the present three-
dimensional approach. Incidentally, H/R = 0-05 represents the limit for classical
shell theories. However, for H/R > 0-05, the two sets of results begin to diverge,
with the present three-dimensional approach giving lower frequencies than the

classical shell theory.

Figures 3 and 4 show the variation of the frequency parameters y against the
circumferential wave number n for a thin simply supported cylindrical shell,
H/R = 0-05, and a thick simply supported cylindrical shell, H/R = 0-3 and 0-5, for



728 C.T. LOY AND K. Y. LAM

I I ] I ] I I ]
0
0-01 0-03 0-05 0-07 0-09 0-11 0-13 015 0-17 0-19
HIR

Figure 2. Variation of frequency parameters ¥ = wR./(1 — v?)p/E against H/R ratios for simply
supported cylinders. (im = 1, n = 4). -& 2D; + 3D.

1 2 3 4 5 6 7 8 9 10

Figure 3. Variation of frequency parameters ¥ = wR./(1 — v?)p/E against circumferential wave
number n for simply supported cylinders. in = 1, L/R = 1). -% H/R = 0-05; + H/R = 0-3; -o- H/R 1-0.
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H/R =0-05

Figure 4. Variation of frequency parameters ¥ = wR

Frequency parameters

TABLE 6

=wR. /(1 —v?})p/E for simply supported-simply

10

(1 —v?)p/E against circumferential wave
number n for simply supported cylinders. (im =1). % L/R=1; + L/R=4.

supported zsotroplc cylinders(m=1,n=0,v =03)

H/L
H/R 01 02 04 06 08 1:0
02 092930 106948 204718 362123 539832 7-24317
0-4 0-46466 0-92930 127983 195313 278942 368531
06 0-30979 0-61954 1-08352 1-45184 195976  2:52904
08 0-23238 0-46468 092931 1-23445 157390 197392
1-0 0-18597 037177 0-74346 1-11517 136267 165852
12 0-15507 0-30986 0-61958 092933 123274 145956
14 0-13304 0-26566 0-53110 0-79659 106209  1:32058
16 0-11659 0-23254 0-46476 0-69704 092935 116166
20 0-09416 0-18648 0-37203 0-55778 074359 092942

the axial wave number m = 1. From Figure 3, when the H/R ratio is increased, the
circumferential wave number n at which the fundamental frequency occurred is
observed to decrease. For example, the fundamental frequency for H/R = 0-05
occurred at n =4, for H/R = 0-3 at n = 2 and for H/R = 0-5 at n = 1. This means
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that when H/R is beyond a certain value, the fundamental frequencies would occur
at n = 1. In Figure 4, the difference in frequencies for a long cylindrical shell,
L/R =4, and a short cylindrical shell, L/R = 1, is comparatively significant for
thick cylindrical shells than for thin cylindrical shells. Both figures highlighted the
interesting characteristics of thick shells and also the difference in the frequency
characteristics between a thick shell and a thin shell.

Tables 6-8 present the frequency parameters ¥ for simply supported isotropic
cylindrical shells. Table 6 gives the frequency parameters for axisymmetric
vibrations while Tables 7 and 8 give the frequency parameters for asymmetric

TABLE 7

Frequency parameters ¥ = wR./(1 —v?)p/E for simply supported—simply
supported isotropic cylinders( m=1,n=1,v =03)

H/L
H/R 01 02 04 06 08 1-0
02 0-58597 099477 206648 364526 541921 726078
04 026463 0-61887 1-23515 196994 281661 371242
06 014793 040327 090637 1-41530 196735  2:55004
08 0-09462 028341 0-69696 111052 153354 1:96882
1-0 0:06622 021128 0-55453 090510 125635 1-60987
12 0-04945 0-16469 045411 0-75670 105878 1:35951

1-4 0-03874 0-13291 0-38063 0-64536 091020 1-17269
16 0-03150 0-11027 0-32509 0-55920 0-79446 1-02738
2-0 0-02262 0-08093 0-24774 0-43515 0-62557 0-81467

TABLE 8

Frequency parameters ¥ = wR./(1 —v?)p/E for simply supported—simply
supported isotropic cylinders (m =1, n =2, v =0-3)

H/L
H/R 01 02 04 06 0-8 1-0
02 0-42083 092122 213264 371801 548184  7-31352
04 0-34653 0-58064 126379 2:05181 290617 379623
06 042526 0-52734 095010 1-48277 205183 263821
08 0-50848 0-55701 0-81368 119274 161427 205130
1-0 0-58193 0-60585 0-76098 103069 135246  1-69482
12 0-64421 0-65489 074815 093894 118618 145957
1-4 0-69206 0-69461 0-74953 0-88478 107552 1:29592

1-6 0-71819 0-71560 0-74697 0-84477 0-99411 117411
2-0 0-692070 0-68648 0-69772 0-75645 0-85715 0-98627
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TABLE 9
Frequency parameters ¥ = wR. /(1 —v?)p/E for clamped—clamped isotropic
cylinders(m=1,n=0,v=03)
H/L
H/R 0-1 0-2 0-4 0-6 0-8 1-0
0-2 1-03567 1-47766 327761 5-32309 7-39131 9-46118
0-4 0-51877 1-03754 1-84188 2-78976 378864 4-80347
06 0-34587 0-69170 1-38339 2:00293 2:63252 3-28708
0-8 0-25944 0-51879 1-03755 1-55631 2:07508 2:55996
1-0 0-20761 0-41506 0-83005 1-24506 1-66007 2-:07508
12 0-17309 0-34593 0-69173 1-03756 1-38340 1-72924
1-4 0-14848 0-29657 0-59294 0-88936 1-18579 1-48222
1-6 0-13008 0-25958 0-51886 0-77822 1-03758 129696
2:0 0-10486 0-20806 0-41529 0-62271 0-83017 1-03765
TABLE 10
Frequency parameters ¥ = wR. /(1 —v?)p/E for clamped—clamped isotropic
cylinders(m=1,n=1,v=03)
H/L

H/R 0-1 0-2 0-4 0-6 0-8 1-0
0-2 0-69319 1-39567 327162 5-32557 7-39564 9-46597
04 0-36463 0-79219 174212 2:74975 377012 4-79481
0-6 0-23543 0-54159 1-19726 1-87447 2:55528 3-23727
0-8 0-16803 0-40698 0-90887 1-42129 1-93471 2:44804
1-0 0-12725 0-32348 0-73081 1-14309 1-55548 1-96754
12 0-10040 0-26659 0-61014 0-95512 1-29969 1-64384
14 0-08171 0-22525 0-52289 0-81965 1-11556 1-41099
1-6 0-06818 0-19379 0-45659 0-71722 097661 1-23542
2:0 0-05030 0-14813 0-36120 0-57102 0-77929 0-98685

vibrations. The result show that the frequencies would decrease when H/R is
increased and increase when H/L is increased.

Tables 9-11 present the frequency parameters ¥ for clamped isotropic
cylindrical shells. Table 9 gives the frequency parameters for axisymmetric
vibrations, and Tables 10 and 11 give the frequency parameters for asymmetric
vibrations. The results also show that the frequencies would decrease when H/R is
increased and increase when H/L is increased. When the results of simply
supported and clamped boundary conditions are compared it is found that the
frequencies of clamped boundary conditions are higher than those for simply
supported boundary conditions.
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TABLE 11
Frequency parameters ¥ = wR. /(1 —v?)p/E for clamped—clamped isotropic
cylinders(m=1,n=2,v=03)
H/L

H/R 01 02 0-4 06 0-8 1-0
0-2 0-56971 1-33769 3-27748 5-34072 741226 9-48240
0-4 041326 0-78170 1-73559 275292 377897 4-80702
0-6 0-45211 0-64728 1-23845 1-89793 2:57231 3-25193
0-8 0-52113 0-62996 1-02049 1-48953 1-98156 2-48296
10 0-58878 0-65257 0-91839 1-26565 1-64284 203355
1-2 0-64836 0-68706 0-87208 1-13459 1-43149 1-74544
1-4 0-69484 0-71876 0-85065 1-05236 1-29016 1-54752
16 0-72023 0-73528 0-83271 099138 1-18547 1-40027
2:0 0-69329 0-70046 0-76283 0-87287 1-01364 1-17400

1-5

1.0 |-

05 -

123
H/R=15
0
H/R=1-0
_0‘5 —
H/IR=04
-1 | | | | | | | | |
-05 -04 -03 -02 -01 0 0-1 02 03 0-4 05
z/H

Figure 5. Distribution of normalized y, against z/H.

Figures 5-7 show the distributions of ¥ , 7, and 7_, the normalized values of y_,
%, and y_ with respect to their respective maximum values, with z/H. The
distributions for y_, y, and y_ are different from one another and are found to vary
for different H/R ratios. It appeared that when H/R ratio is large, higher order
polynomials are needed to describe the distributions of y , x, and y,.
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Figure 6. Distribution of normalized y, against z/H.
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Figure 7. Distribution of normalized y, against z/H.
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Figure 8. Distribution of normalized ¢, against x/L. -& SS-SS; + C-C.
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Figure 9. Distribution of normalized ¢, against x/L. & SS-SS; + C-C.
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Figure 10. Distribution of normalized ¢, against x/L. - SS-SS; + C-C.

Figures 8-10 show the distributions of ¢,, ¢, and ¢., the normalized values of
¢, ¢o and ¢, with respect to their respective maximum values, against x/L. From
the figures, the geometric boundary conditions for both the simply supported and
clamped boundary conditions are satisfied.

The present study highlighted a few things. Firstly, classical shell theories are
only accurate for H/R < 0-05. Secondly, the distributions for y_, x, and y_ are
different from one another and they vary with the H/R ratio. When H/R ratio is
large, the distributions of y_, y, and y_ are such that higher order polynomials are
needed to describe them.

4. CONCLUSIONS

A study of the vibration of thick isotropic cylindrical shells on the basis of
three-dimensional theory of elasticity has been presented for simply supported and
clamped boundary conditions. In the study, a thick cylindrical shell is discretized
into an arbitrary number of thin layers in the thickness direction. The
displacements through the thickness are approximated by some linear-shape
functions that are expressed in terms of some generalized coordinates. The
displacements in the axial and circumferential directions are approximated by
trigonometric functions that are chosen to satisfy the specific geometric boundary
conditions and the periodicity of the motion. The characteristic eigenvalue
governing equation is obtained using an energy minimization principle and is
solved to yield the natural frequencies and the generalized co-ordinates. Extensive
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frequency parameters, never published in the literature before, for a wide range of
thickness-to-radius and thickness-to-length ratios, have been presented. The
distribution of the displacement fields in the thickness direction for various
thickness-to-radius ratios and a study comparing the frequency characteristics for
thin and thick cylindrical shells are also presented. Comparisons of results with
published results in the literature have been carried out and good agreement is
observed.

[a—y

2
3

4.

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

REFERENCES

. L. H. DONNELL 1993 NACA Report No. 479. Stability of thin walled tubes under torsion.

. W. FLUGGE 1933 Stresses in Shells. Berlin: Springer.

. A. E. H. Love 1952 A Treatise on the Mathematical Theory of Elasticity. Cambridge:

Cambridge University Press, fourth edition.

J. L. SANDERS 1959 NASA Report NASA-TR-R24. An improved first approximation

theory for thin shells.

A. BHIMARADDI 1984 International Journal of Solids Structures 20, 623-630. A higher

order theory for free vibration analysis of circular cylindrical shells.

. J.N. REpDY 1989 Internatinal Journal of Numerical Methods in Engineering 27, 361-382.
On refined computational models of composite laminates.

. L. PocHHAMMER 1876 Zeitschrift fiir Reine und Angewandte Mathematik 81, 324-326.
Uber die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in einem unbegren-
zten isotropen Kreisylinder.

. C. CHrEE 1889 Transactions of the Cambridge Philosophical Society 14, 250-369. The
equations of an isotropic elastic solid in polar and cylindrical coordinates, their
solutions and applications.

. J. E. GREENSPON 1957 Journal of Aerospace Sciences 27, 1365-1373. Flexural vibrations

of a thick-walled cylinder according to the exact theory of elasticity.

D. C. Gazis 1959 Journal of the Acoustical Society of America 31, 568-578.

Three-dimensional investigation of the propagation of waves in hollow circular

cylinders.

G. HermanN and 1. MirskY 1956 Journal of the Acoustical Society of America 23,

563-658. Three-dimensional and shell theory analysis of axially-symmetric motion of

cylinders.

R. B. NELsoN, S. B. DonG and R. D. KALrA 1971 Journal of Sound and Vibration 18,

429-444. Vibrations and waves in laminated orthotropic circular cylinders.

A. E. ArRMENAKAS, D. S. Gazis and G. HERRMANN 1969 Free Vibrations of Circular

Cylindrical Shells. Oxford: Pergamon Press.

G. M. L. GLapweLL and D. K. Viay 1975 Journal of Sound and Vibration 42, 387-397.

Natural frequencies of finite-length circular cylinders.

J.R. HutcHinsoN and S. A. EL-AzHar1 1986 Vibrations of free hollow circular cylinders.

Journal of Applied Mechanics 53, 641-646.

R. K. SingaL and K. Wittiams 1988 Journal of Vibration, Acoustics, Stress and

Reliability in Design 110, 532-537. A theoretical and experimental study of vibrations of

thick circular cylindrical shells and rings.

Y. K. CHEUNG and C. I. Wu 1972 Journal of Sound and Vibration 24, 189-200. Free

vibrations of thick, layered cylinders having finite length with various boundary

conditions.

K. P. SorpaTtos and V. P. HapsigeorGiou 1990 Journal of Sound and Vibration 137,

369-384. Three-dimensional solution of the free vibration problem of homogeneous

isotropic cylindrical shells and panels.

J. Y. So and A. W. Leissa 1997 Journal of Vibration and Acoustics 119, 89-95. Free

vibrations of thick hollow circular cylinders from three-dimensional analysis.



20

21.

22.

23.
24.

25.

26.

VIBRATION OF THICK CYLINDRICAL SHELLS 737

. X. Y. JIANG 1997 Journal of Vibration and Acoustics 119, 46-51. 3-D vibration analysis
of fiber reinforced composite laminated cylindrical shells.

J. Q. YE and K. P. Sorpatos 1997 Journal of Vibration and Acoustics 119, 317-323.
Three-dimensional vibrations of cross-ply laminated hollow cylinders with clamped
edge boundaries.

Y. K. CHEUNG 1976 Finite Strip Method in Structural Analysis. Oxford: Pergamon Press,
first edition.

Y. K. CHeunG and L. G. THaMm 1998 Finite Strip Method. Boca Raton: CRC Press.
K. Y. Lam and C. T. Loy 1995 Journal of Sound and Vibration 188, 363-384. Effects of
boundary conditions on frequencies of a multi-layered cylindrical shell.

C.T. Loy, K. Y. Lam and C. Suu 1997 Shock and Vibration 4, 193-198. Analysis of
cylindrical shells using generalized differential quadrature.

T. Y. NG and K. Y. Lam 1999 Applied Acoustics 56, 273-282. Vibration and critical
speed of a rotating cylindrical shell subjected to axial loading.



	1. INTRODUCTION
	2. FORMULATION
	Figure 1

	3. NUMERICAL RESULTS AND DISCUSSION
	TABLE 1
	TABLE 2
	TABLE 3
	TABLE 4
	TABLE 5
	TABLE 6
	TABLE 7
	TABLE 8
	TABLE 9
	TABLE 10
	TABLE 11
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10

	4. CONCLUSIONS
	REFERENCES

