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In this paper, an approximate analysis using a layerwise approach is presented to
study the vibration of thick circular cylindrical shells on the basis of
three-dimensional theory of elasticity. The boundary conditions studied are simply
supported}simply supported and clamped}clamped boundary conditions. In this
approach, the thick cylindrical shell is discretized into an arbitrary number of thin
cylindrical layers in the thickness direction and each layer assumes a three-dimen-
sional stress state. The approach is similar in concept to the "nite-strip method.
The displacements for each layer are approximated by trigonometric functions in
the axial and circumferential directions and by some linear-shape functions in the
thickness direction. The governing equation is obtained using an energy minimiz-
ation principle. Extensive frequency parameters, never seen in the literature before,
have been presented for a wide range of thickness-to-radius ratios and
thickness-to-length ratios. In addition, the frequency characteristics of thin and
thick cylindrical shells are also studied and the displacement "elds in the thickness
direction for various thickness-to-radius ratios are also presented. The analysis has
been veri"ed by comparing results with those in the literature and excellent
agreement is obtained.

( 1999 Academic Press
1. INTRODUCTION

In the literature, many of the shells studied are based on classical shell theories,
such as Donnell's [1], FluK gge's [2], Love's [3] and Sanders' [4] shell theories,
which are based on the four simplifying assumptions of Kirchho!-Love's hypothe-
sis, see reference [3]. In classical or thin-shell theories, the transverse stress and
strain components are ignored. This omission makes the thin-shell theories highly
inadequate for the analysis of even slightly thick shells. In recent years, the
re"nement of thin-shell theories has resulted in a number of the so-called higher
order shell theories, see for example, Bhimaraddi [5] and Reddy [6]. The higher
order shell theories are better than the thin-shell theories for the analysis of slightly
thick shells but are still inadequate for the analysis of moderately thick shells.
To analyze moderately thick shells, the transverse normal stress and strain
components, which are ignored in the higher ordered shell theories, have to be
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accounted for and only an analysis based on the three-dimensional theory of
elasticity would account for all the transverse stress and strain components.

In the literature, the study of shells using three-dimensional theory of elasticity is
relatively scarce in comparison to the study of shells using other shell theories
because of the complexity involved in considering all six stress and strain
components. Studies on shells based on three-dimensional theory of elasticity have
been presented by Pochhammer [7] and Chree [8], Greenspon [9], Gazis [10],
Herrmann and Mirsky [11], Nelson et al. [12], and Armenakas et al. [13] for
in"nitely long cylindrical shells. For "nite-length cylindrical shells, Gladwell and
Vijay [14], Hutchinson and El-Azhari [15], Singal and Williams [16], Cheung and
Wu [17], and Soldatos, Hadjigeorgiou [18], Leissa [19], Jiang [20], and Ye and
Soldatos [21] have also presented studies using three-dimensional theory of elasticity.

An exact three-dimensional elasticity analysis of a cylindrical shell is a
challenging problem. The di$culty lies in "nding a set of displacement "elds that
would satisfy the speci"ed boundary conditions and the stress-free surface
conditions. In the above studies, the three-dimensional elasticity of elasticity
solutions are based on the Rayleigh}Ritz method, see for example, Gladwell and
Vijay [14], Hutchinson and El-Azhari [15], Singal and Williams [16] and So and
Leissa [19], the perturbation method by Jiang [20], and a recursive solution
method by Ye and Soldatos [21].

In this paper, an approximate analysis similar to the "nite-strip method, see
Cheung [22] and Cheung and Tham [23], is employed to study the vibration of
thick cylindrical shells on the basis of three-dimensional theory of elasticity. In this
approach, the cylindrical shell is discretized into an arbitrary number of thin layers
in the thickness direction, and the discretization process is similar to the
"nite-element method. The displacements in the axial and circumferential
directions for each layer are approximated by trigonometric functions that satisfy
at least the geometric boundary conditions and the periodicity of harmonic motion
respectively. In the thickness direction, the displacements are approximated by
some linear-shape functions that are expressed in terms of some generalized
co-ordinates. The displacements across the thickness are assumed to be continuous.
Using an energy minimization principle, the characteristic eigenvalue equation can
be obtained and solved for the natural frequencies and eigenvectors, which are the
generalized co-ordinates.

In the literature, many of the studies for "nite length thick cylindrical shells using
the three-dimensional theory of elasticity are for free}free boundary conditions, see
for example, Gladwell and Vijay [14], Hutchinson and El-Azhari [15], Singal and
Williams [16] and So and Leissa [19]. In the present work, studies are carried out
for simply supported and clamped boundary conditions and extensive frequency
parameters are presented which are never found in the literature. Cheung and Wu
[17], Soldatos and Hadjigeorgiou [18], Jiang [20] and Ye and Soldatos [21] have
presented some studies for either simply supported or clamped boundary condi-
tions. However, in these papers, very few results were presented. The extensive
frequency parameters presented would be useful for researchers who can use them
to validate against their results. The present analysis has been validated against
available published results and the agreement is found to be excellent.
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2. FORMULATION

Consider a thick cylindrical shell, see Figure 1(a) having a uniform thickness H,
length ¸ and a radius R. In the present approach, the cylinder is discretized into an
arbitrary number of thin annular cylindrical layers, nl, see Figure 1(b), and each
layer has a uniform thickness h. For the jth layer, the displacements in the x, h and
z directions, de"ned with respect to a middle surface co-ordinate system (x, h, z), are
denoted by u j

x
, u jh and uj

z
, respectively.

For the jth layer, the displacements u j
x
, u jh and u j

z
are written as

uj
x
"sj

x
(z, t)/

x
(x) cos(nh),

ujh"sj
h
(z, t)/h (x) sin(nh),

uj
z
"sj

z
(z, t)/

z
(x) cos(nh), (1)
Figure 1. (a) Geometry of a thick cylindrical shell; (b) Geometry of a cylindrical layer.



722 C. T. LOY AND K. Y. LAM
where

sj
i
(z, t)"a uj

i
#b uj`1

i
(2)

in which b"(z!z
j
)/h and a"1!b. z

j
is the distance from the middle surface of

the cylinder to the lower surface of jth layer and u j
i
are the generalized co-ordinates.

/
i
(x) are some functions which satisfy the geometric boundary conditions, and n is

an integer denoting the circumferential wave number.
The displacement "elds de"ned in equation (1) can be written in a matrix form as

u"N ) d , (3)

where

uT"Mu j
x

u jh u j
z
N , (4)

dT"Mu j
x

u jh u j
z

uj`1
x

u j`1h uj`1
z

N , (5)

N"[N
1

N
2
] (6)

and

N
1
"

a/
u
cos(nh) 0 0

0 a/h sin(nh) 0

0 0 a/
z
cos(nh)

, (7)

N
2
"

b/
u
cos(nh) 0 0

0 b/h sin(nh) 0

0 0 b/
z
cos(nh)

. (8)

For the jth layer, the three-dimensional stress-strain relation is given by Hooke's
law as

p"[C]e , (9)

where

pT"Mp
x

ph p
z

qhz q
xz

q
xhN , (10)

eT"Me
x

eh e
z

chz c
xz

c
xhN (11)

and the elastic coe$cients matrix [C] for isotropic materials is de"ned as

[C]"

C
11

C
12

C
13

0 0 0

C
12

C
22

C
23

0 0 0

C
13

C
23

C
33

0 0 0

0 0 0 C
44

0 0

0 0 0 0 C
55

0

0 0 0 0 0 C
66

, (12)
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where the coe$cients C
ij

are de"ned as

C
11
"C

22
"C

33
"j#2G,

C
12
"C

13
"C

23
"j,

C
44
"C

55
"C

66
"G,

j"
lE

(1#l) (1!2l)
,

G"

E
2(1#l)

. (13)

The three-dimensional elasticity strain}displacement relations can be written in
a matrix form as

e"D ) u, (14)

where the di!erential operator D is de"ned as

D"

L
Lx

0 0

0
1
R

j

L
Lh

1
R

j

0 0
L
Lz

0
L
Lz

!

1
R

j

1
R

j

L
Lh

L
Lz

0
L
Lx

1
R

j

L
Lh

L
Lx

0

(15)

in which R
j
is the radius of the jth layer. Equation (14) can be rewritten as

e"B ) d , (16)

where

B"D )N. (17)

In the present study, the cylinders are subjected to simply supported and
clamped boundary conditions. For simply supported boundary conditions, the
conditions at the ends, x"0, ¸, are de"ned as

uh"u
z
"p

x
"0 (18)

and for the clamped boundary conditions, the conditions at the ends, x"0, ¸, are

u
x
"uh"u

z
"Lu

z
/Lx"0. (19)
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In the present analysis, through the use of orthogonal beam functions for /
i
, the

above boundary conditions are fairly well satis"ed.
The kinetics ¹

j
and potential <

j
energies for the jth layer is obtained by

integrating the respective energy density over the layer's volume as follows:

¹
j
"

1
2 PPP

vol

o
j
( (uR j

x
)2#(uR jh )2#(uR j

z
)2)R

j
dhdx dz , (20)

<
j
"

1
2 PPP

vol

pT ) eR
j
dhdxdz . (21)

After substituting equation (3) into equation (20) and substituting equations (9) and
(16) into equation (21), the kinetic ¹

j
and potential <

j
energies for the jth layer can

be written in a matrix form as

¹
j
"1

2
d5T )M

j
) d5 , (22)

<
j
"1

2
dT )K

j
) d, (23)

where M
j
and K

j
are the mass and sti!ness matrices of the jth layer de"ned as

M
j
"PPP

vol

(o
j
NT N )R

j
dhdx dz , (24)

K
j
"PPP

vol

(BT )C )B)R
j
dhdx dz. (25)

For the cylinder, the kinetic ¹ and potential < energies are obtained by summing
the kinetic ¹

j
and potential <

j
energies of all layers. The kinetic ¹ and potential

< energies of the cylinder can be written as

¹"1
2
d0 T )M ) d0 , (26)

<"1
2
dT )K ) d, (27)

where

dT"Mu1
x

u1h u1
z

u2
x

u2h u2
z
2u3(nl`1)

x
u3(nl`1)h u3(nl`1)

z
N (28)

in which d denotes the set of generalized co-ordinates for the cylinder and nl
denotes number of layers in the cylinders. M and K are, respectively, the mass and
sti!ness matrices. The size of these matrices is 3(nl#1)](3(nl#1). Applying an
energy minimization principle to an energy function de"ned as ¸"¹!<, one
gets

Kd#MdG"0. (29)
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Substituting d"d
0
eiut into equation (29) will result in an eigenvalue equation of

the form

MK!u2MNd
0
"M0N . (30)

3. NUMERICAL RESULTS AND DISCUSSION

To validate the present approach, the results are compared with available
published results in the literature for a wide range of thickness-to-radius ratios.

Table 1 shows the convergence of the frequency parameter X"(uH/n)Jo/G for
a thin to a thick cylindrical shell. The results for H/R"2)0 correspond to a solid
cylindrical shell. The convergence study showed that the frequency parameter
X converged as the number of layers increased. Table 2 shows the comparison of
the frequency parameter uN "u¸Jo(1#l)/E with three-dimensional elasticity
results of Soldatos and Hadjigeorgiou [18]; the results are in good agreement.
Tables 3}5 show the comparison of the frequency parameter X"(uH/n)Jo/G
with the results of Armenakas et al. [13] for various thick cylindrical shells. The
results are also in good agreement. In all the comparisons, the results compared are
for nl"25.

In this paper, the frequency characteristics of thick simply supported}simply
supported and clamped}clamped cylindrical shells are studied. Frequency
parameters W"uRJ(1!l2)o/E, of hollow and solid cylindrical shells are
presented for a wide range of H/R and H/¸ ratios. A study to compare the
frequencies obtained using classical shell theory and the present analysis is also
presented.
TABLE 1

Convergence of frequency parameters X"(uH/n)Jo/G for isotropic cylinders
(m"n"1, H/¸"0)2, l"0)3)

H/R

nl 0)01 0)1 0)2 2)0

5 0)05804 0)07642 0)10723 0)08799
10 0)05782 0)07624 0)10709 0)08734
15 0)05777 0)07620 0)10706 0)08718
20 0)05776 0)07619 0)10705 0)08712
25 0)05775 0)07619 0)10705 0)08709
30 0)05775 0)07618 0)10704 0)08707
35 0)05775 0)07618 0)10704 0)08706
40 0)05774 0)07618 0)10704 0)08705
45 0)05774 0)07618 0)10704 0)08705
50 0)05774 0)07618 0)10704 0)08704

Exacts 0)05774 0)07618 0)10704 0)08703

sArmenakas et al. [13].



TABLE 2

Comparison of frequency parameters uN "u¸Jo(1#l)/E for isotropic cylinders
(m"1, ¸/R"1)0, l"0)3)

H/R n Soldatos et al. [18] sArmenakas et al. [13] Present

0)1 1 1)06238 1)06226 1)06234
2 0)88260 0)88233 0)88253
3 0)80963 0)80925 0)80951
4 0)89905 0)89877 0)89893
5 1)12216 1)12209

0)2 1 1)18908 1)18889 1)18898
2 1)10121 1)10092 1)10107
3 1)19793 1)19755 1)19777
4 1)48975 1)48933 1)48971
5 1)91389 1)91406

0)3 1 1)33761 1)33727 1)33748
2 1)32371 1)32335 1)32359
3 1)52805 1)52764 1)52804
4 1)92695 1)92660 1)92722
5 2)44628 2)44692

sAdapted from Soldatos et al. [18].

TABLE 3

Comparison of frequency parameters X"(uH/n)Jo/G for isotropic
cylinders (m"1, H/R"0)4, l"0)3)

n H/¸ Armenakas et al. [13] Present

0 0)01 0)01612 0)01002
0)1 0)15289 0)10000
0)2 0)20495 0)20000
0)4 0)27540 0)27544
0)6 0)42022 0)42035
0)8 0)60009 0)60033
1)0 0)79274 0)79314

2 0)01 0)06217 0)06219
0)1 0)07456 0)07458
0)2 0)12494 0)12496
0)4 0)27193 0)27199
0)6 0)44144 0)44158
0)8 0)62520 0)62546
1)0 0)81660 0)81701
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Figure 2 shows the variation of the frequency parameters t against H/R ratios
for frequencies computed using classical Love's shell theory, see Lam and Loy [24]
and Loy et al. [25], and the present three-dimensional analysis. For H/R)0)05,



TABLE 4

Comparison of frequency parameters X"(uH/n)Jo/G for isotropic
cylinders (m"1, H/R"1)0, l"0)3)

n H/¸ Armenakas et al. [13] Present

1 0)01 0)00040 0)00041
0)1 0)03563 0)03563
0)2 0)11368 0)11368
0)3 0)20451 0)20451
0)4 0)29836 0)29836
0)6 0)48693 0)48698
0)8 0)67583 0)67597
1)0 0)86589 0)86618

3 0)01 0)65850 0)65890
0)1 0)65957 0)65997
0)2 0)66496 0)66535
0)3 0)67876 0)67914
0)4 0)70383 0)70421
0)6 0)78912 0)78952
0)8 0)91240 0)91285
1)0 1)06030 1)06084

TABLE 5

Comparison of frequency parameters X"(uH/n)Jo/G for
isotropic solid cylinders (m"n"1, H/R"2)0, l"0)3)

H/¸ Armenakas et al. [13] Present

0)01 0)000253 0)000258
0)1 0)02423 0)02434
0)2 0)08703 0)08709
0)4 0)26658 0)26659
0)6 0)46827 0)468256
0)8 0)67316 0)67316
1)0 0)87660 0)87665
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there is no di!erence between classical shell theory and the present three-
dimensional approach. Incidentally, H/R"0)05 represents the limit for classical
shell theories. However, for H/R'0)05, the two sets of results begin to diverge,
with the present three-dimensional approach giving lower frequencies than the
classical shell theory.

Figures 3 and 4 show the variation of the frequency parameters t against the
circumferential wave number n for a thin simply supported cylindrical shell,
H/R"0)05, and a thick simply supported cylindrical shell, H/R"0)3 and 0)5, for



Figure 2. Variation of frequency parameters W"uRJ(1!l2)o/E against H/R ratios for simply
supported cylinders. (m"1, n"4). j* 2D; #3D.

Figure 3. Variation of frequency parameters W"uRJ(1!l2)o/E against circumferential wave
number n for simply supported cylinders. (m"1, ¸/R"1). j* H/R"0)05; #H/R"0)3; m* H/R 1)0.
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Figure 4. Variation of frequency parameters W"uRJ(1!l2)o/E against circumferential wave
number n for simply supported cylinders. (m"1). j* ¸/R"1; #¸/R"4.

TABLE 6

Frequency parameters W"uRJ(1!l2)o/E for simply supported}simply
supported isotropic cylinders (m"1, n"0, l"0)3)

H/¸

H/R 0)1 0)2 0)4 0)6 0)8 1)0

0)2 0)92930 1)06948 2)04718 3)62123 5)39832 7)24317
0)4 0)46466 0)92930 1)27983 1)95313 2)78942 3)68531
0)6 0)30979 0)61954 1)08352 1)45184 1)95976 2)52904
0)8 0)23238 0)46468 0)92931 1)23445 1)57390 1)97392
1)0 0)18597 0)37177 0)74346 1)11517 1)36267 1)65852
1)2 0)15507 0)30986 0)61958 0)92933 1)23274 1)45956
1)4 0)13304 0)26566 0)53110 0)79659 1)06209 1)32058
1)6 0)11659 0)23254 0)46476 0)69704 0)92935 1)16166
2)0 0)09416 0)18648 0)37203 0)55778 0)74359 0)92942
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the axial wave number m"1. From Figure 3, when the H/R ratio is increased, the
circumferential wave number n at which the fundamental frequency occurred is
observed to decrease. For example, the fundamental frequency for H/R"0)05
occurred at n"4, for H/R"0)3 at n"2 and for H/R"0)5 at n"1. This means
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that when H/R is beyond a certain value, the fundamental frequencies would occur
at n"1. In Figure 4, the di!erence in frequencies for a long cylindrical shell,
¸/R"4, and a short cylindrical shell, ¸/R"1, is comparatively signi"cant for
thick cylindrical shells than for thin cylindrical shells. Both "gures highlighted the
interesting characteristics of thick shells and also the di!erence in the frequency
characteristics between a thick shell and a thin shell.

Tables 6}8 present the frequency parameters W for simply supported isotropic
cylindrical shells. Table 6 gives the frequency parameters for axisymmetric
vibrations while Tables 7 and 8 give the frequency parameters for asymmetric
TABLE 7

Frequency parameters W"uRJ(1!l2)o/E for simply supported}simply
supported isotropic cylinders (m"1, n"1, l"0)3)

H/¸

H/R 0)1 0)2 0)4 0)6 0)8 1)0

0)2 0)58597 0)99477 2)06648 3)64526 5)41921 7)26078
0)4 0)26463 0)61887 1)23515 1)96994 2)81661 3)71242
0)6 0)14793 0)40327 0)90637 1)41530 1)96735 2)55004
0)8 0)09462 0)28341 0)69696 1)11052 1)53354 1)96882
1)0 0)06622 0)21128 0)55453 0)90510 1)25635 1)60987
1)2 0)04945 0)16469 0)45411 0)75670 1)05878 1)35951
1)4 0)03874 0)13291 0)38063 0)64536 0)91020 1)17269
1)6 0)03150 0)11027 0)32509 0)55920 0)79446 1)02738
2)0 0)02262 0)08093 0)24774 0)43515 0)62557 0)81467

TABLE 8

Frequency parameters W"uRJ(1!l2)o/E for simply supported}simply
supported isotropic cylinders (m"1, n"2, l"0)3)

H/¸

H/R 0)1 0)2 0)4 0)6 0)8 1)0

0)2 0)42083 0)92122 2)13264 3)71801 5)48184 7)31352
0)4 0)34653 0)58064 1)26379 2)05181 2)90617 3)79623
0)6 0)42526 0)52734 0)95010 1)48277 2)05183 2)63821
0)8 0)50848 0)55701 0)81368 1)19274 1)61427 2)05130
1)0 0)58193 0)60585 0)76098 1)03069 1)35246 1)69482
1)2 0)64421 0)65489 0)74815 0)93894 1)18618 1)45957
1)4 0)69206 0)69461 0)74953 0)88478 1)07552 1)29592
1)6 0)71819 0)71560 0)74697 0)84477 0)99411 1)17411
2)0 0)692070 0)68648 0)69772 0)75645 0)85715 0)98627



TABLE 9

Frequency parameters W"uRJ(1!l2)o/E for clamped}clamped isotropic
cylinders (m"1, n"0, l"0)3)

H/¸

H/R 0)1 0)2 0)4 0)6 0)8 1)0

0)2 1)03567 1)47766 3)27761 5)32309 7)39131 9)46118
0)4 0)51877 1)03754 1)84188 2)78976 3)78864 4)80347
0)6 0)34587 0)69170 1)38339 2)00293 2)63252 3)28708
0)8 0)25944 0)51879 1)03755 1)55631 2)07508 2)55996
1)0 0)20761 0)41506 0)83005 1)24506 1)66007 2)07508
1)2 0)17309 0)34593 0)69173 1)03756 1)38340 1)72924
1)4 0)14848 0)29657 0)59294 0)88936 1)18579 1)48222
1)6 0)13008 0)25958 0)51886 0)77822 1)03758 1)29696
2)0 0)10486 0)20806 0)41529 0)62271 0)83017 1)03765

TABLE 10

Frequency parameters W"uRJ(1!l2)o/E for clamped}clamped isotropic
cylinders (m"1, n"1, l"0)3)

H/¸

H/R 0)1 0)2 0)4 0)6 0)8 1)0

0)2 0)69319 1)39567 3)27162 5)32557 7)39564 9)46597
0)4 0)36463 0)79219 1)74212 2)74975 3)77012 4)79481
0)6 0)23543 0)54159 1)19726 1)87447 2)55528 3)23727
0)8 0)16803 0)40698 0)90887 1)42129 1)93471 2)44804
1)0 0)12725 0)32348 0)73081 1)14309 1)55548 1)96754
1)2 0)10040 0)26659 0)61014 0)95512 1)29969 1)64384
1)4 0)08171 0)22525 0)52289 0)81965 1)11556 1)41099
1)6 0)06818 0)19379 0)45659 0)71722 0)97661 1)23542
2)0 0)05030 0)14813 0)36120 0)57102 0)77929 0)98685
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vibrations. The result show that the frequencies would decrease when H/R is
increased and increase when H/¸ is increased.

Tables 9}11 present the frequency parameters W for clamped isotropic
cylindrical shells. Table 9 gives the frequency parameters for axisymmetric
vibrations, and Tables 10 and 11 give the frequency parameters for asymmetric
vibrations. The results also show that the frequencies would decrease when H/R is
increased and increase when H/¸ is increased. When the results of simply
supported and clamped boundary conditions are compared it is found that the
frequencies of clamped boundary conditions are higher than those for simply
supported boundary conditions.



TABLE 11

Frequency parameters W"uRJ(1!l2)o/E for clamped}clamped isotropic
cylinders (m"1, n"2, l"0)3)

H/¸

H/R 0)1 0)2 0)4 0)6 0)8 1)0

0)2 0)56971 1)33769 3)27748 5)34072 7)41226 9)48240
0)4 0)41326 0)78170 1)73559 2)75292 3)77897 4)80702
0)6 0)45211 0)64728 1)23845 1)89793 2)57231 3)25193
0)8 0)52113 0)62996 1)02049 1)48953 1)98156 2)48296
1)0 0)58878 0)65257 0)91839 1)26565 1)64284 2)03355
1)2 0)64836 0)68706 0)87208 1)13459 1)43149 1)74544
1)4 0)69484 0)71876 0)85065 1)05236 1)29016 1)54752
1)6 0)72023 0)73528 0)83271 0)99138 1)18547 1)40027
2)0 0)69329 0)70046 0)76283 0)87287 1)01364 1)17400

Figure 5. Distribution of normalized s
x

against z/H.
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Figures 5}7 show the distributions of s6
x
, s6

h
and s6

z
, the normalized values of s

x
,

s
h

and s6
z

with respect to their respective maximum values, with z/H. The
distributions for s

x
, s

h
and s

z
are di!erent from one another and are found to vary

for di!erent H/R ratios. It appeared that when H/R ratio is large, higher order
polynomials are needed to describe the distributions of s

x
, s

h
and s

z
.



Figure 6. Distribution of normalized s
h
against z/H.

Figure 7. Distribution of normalized s
z
against z/H.

VIBRATION OF THICK CYLINDRICAL SHELLS 733



Figure 8. Distribution of normalized /
x

against x/¸. j* SS-SS; # C-C.

Figure 9. Distribution of normalized /h against x/¸. j* SS-SS; # C-C.
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Figure 10. Distribution of normalized /
z
against x/¸. j* SS-SS; # C-C.
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Figures 8}10 show the distributions of /M
x
, /M h and /M

z
, the normalized values of

/
x
, /h and /

z
with respect to their respective maximum values, against x/¸. From

the "gures, the geometric boundary conditions for both the simply supported and
clamped boundary conditions are satis"ed.

The present study highlighted a few things. Firstly, classical shell theories are
only accurate for H/R)0)05. Secondly, the distributions for s

x
, s

h
and s

z
are

di!erent from one another and they vary with the H/R ratio. When H/R ratio is
large, the distributions of s

x
, s

h
and s

z
are such that higher order polynomials are

needed to describe them.

4. CONCLUSIONS

A study of the vibration of thick isotropic cylindrical shells on the basis of
three-dimensional theory of elasticity has been presented for simply supported and
clamped boundary conditions. In the study, a thick cylindrical shell is discretized
into an arbitrary number of thin layers in the thickness direction. The
displacements through the thickness are approximated by some linear-shape
functions that are expressed in terms of some generalized coordinates. The
displacements in the axial and circumferential directions are approximated by
trigonometric functions that are chosen to satisfy the speci"c geometric boundary
conditions and the periodicity of the motion. The characteristic eigenvalue
governing equation is obtained using an energy minimization principle and is
solved to yield the natural frequencies and the generalized co-ordinates. Extensive
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frequency parameters, never published in the literature before, for a wide range of
thickness-to-radius and thickness-to-length ratios, have been presented. The
distribution of the displacement "elds in the thickness direction for various
thickness-to-radius ratios and a study comparing the frequency characteristics for
thin and thick cylindrical shells are also presented. Comparisons of results with
published results in the literature have been carried out and good agreement is
observed.
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